DDDAS Predictions for Water Spills

نویسندگان

  • Craig C. Douglas
  • Paul Dostert
  • Yalchin Efendiev
  • Richard E. Ewing
  • Deng Li
  • Robert A. Lodder
چکیده

Time based observations are the linchpin of improving predictions in any dynamic data driven application systems. Our predictions are based on solutions to differential equation models with unknown initial conditions and source terms. In this paper we want to simulate a waste spill by a water body, such as near an aquifer or in a river or bay. We employ sensors that can determine the contaminant spill location, where it is at a given time, and where it will go. We estimate initial conditions and source terms using better and new techniques, which improves predictions for a variety of data-driven models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Remote Sensing Data-Driven Approach for Oil Spill Simulation in the Sea

In view of the fact that oil spill remote sensing could only generate the oil slick information at a specific time and that traditional oil spill simulation models were not designed to deal with dynamic conditions, a dynamic data-driven application system (DDDAS) was introduced. The DDDAS entails both the ability to incorporate additional data into an executing application and, in reverse, the ...

متن کامل

Dynamic Data Driven Application System for Wildfire Spread Simulation

Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it ...

متن کامل

Automated Extraction of Fire Line Parameters from Multispectral Infrared Images

Remotely sensed infrared images are often used to assess wildland fire conditions. Separately, fire propagation models are in use to forecast future conditions. In the Dynamic Data Driven Application System (DDDAS) concept, the fire propagation model will react to the image data, which should produce more accurate predictions of fire propagation. In this study we describe a series of image proc...

متن کامل

Real-time estimation of TP load in a Mississippi Delta stream using a dynamic data driven application system.

Elevated phosphorus (P) in surface waters can cause eutrophication of aquatic ecosystems and can impair water for drinking, industry, agriculture, and recreation. Currently, no effort has been devoted to estimating real-time variation and load of total P (TP) in surface waters due to the lack of suitable and/or cost-effective wireless sensors. However, when considering human health, drinking wa...

متن کامل

DYNAMIC DATA DRIVEN APPLICATION SYSTEM FOR WILDFIRE SPREAD SIMULATION by

Wildfires have significant impact on both ecosystems and human society. To effectively manage wildfires, simulation models are used to study and predict wildfire spread. The accuracy of wildfire spread simulations depends on many factors, including GIS data, fuel data, weather data, and high-fidelity wildfire behavior models. Unfortunately, due to the dynamic and complex nature of wildfire, it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008